ディープラーニングを支える2つの柱

ディープラーニングには、ニューラルネットワークを鍛えるための莫大な量のデータと、それを処理するための超高速なコンピュータの2つが必要だ。ディープラーニングにたどり着くまでに、十分な精度をもたらすための莫大なデータと、それを現実的な速度で処理する処理速度がなかったため、2000年代にいたるまで人工知能の進化は限定的だったと記したが、そのことは、最近の研究事例を見てもわかる。

たとえば、2012年にGoogleが猫の概念をディープラーニングによって抽出するのに、200×200ピクセルのYouTube動画から切り出した画像を1000万枚用意し、1000台のコンピュータ(16000CPUコア)を使ってようやく達成できたものだ。しかも時間は1週間かかっている。

幸い、大量のデータは、今ならインターネットにいくらでもデータが転がっている。企業などであれば、行動データやいわゆるビッグデータも、人工知能を鍛える上でもってこいの「餌」なわけだ。もう1つの超高速なコンピュータについても、毎年の技術革新のおかげで、スーパーコンピュータクラスの超高速処理が可能なコンピュータを、個人の研究者がなんとか揃えられるようなレベルにまで価格が下がってきている。ただし、ここでイメージすべきは、超高性能CPUではない。求められるのは、GPUの性能となる。

ディープラーニングの発達要素は「ディープニューラルネットワーク(DNN)」「ビッグデータ」「GPU」の3つ(NVIDIA Deep Learning Day 2016講演資料より)

そして、GPUの開発環境や実績などを見ていくと、ディープラーニングの発達は米NVIDIAが握っているとも言えるのだ。NVIDIA自身も、今ではこの人工知能の分野に力を入れている。ではなぜGPUの発達が求められるのか、NVIDIAがこの分野で取り組んでいるのは、どんなことか。次回はこの点についてみていこう。