ディープラーニングの何がすごいのか
ディープラーニングは、それまでの機械学習を発展させたものだ。機械学習では、コンピュータに入力するデータの中から、解析に役立ちそうな特徴を抽出するための仕組みに人の手が介在した。ところがディープラーニングでは、こうした特徴抽出すらも処理の中に含まれており、特徴の選択も機械が学習する。人間は最小限の下処理をしたデータを人工知能に与えてやるだけでいい。
たとえば10万枚の写真の中から「猫」の映った画像だけを探す場合、従来の手段では猫っぽい特徴のあるデータをあらかじめいくつか用意しておき、その部分を指定しておくと、機械がその特徴に似た部分を探してくれるというものだった。
これがディープラーニングだと、与えられた写真を精査し、「これは猫っぽいのではないか」という答えを機械が人間に示してくる。それに対して人間が評価を与えると、その評価をもとに再度データを調べ直す、という手法で精度が徐々に高まっていく。まるで「これは? これは?」と親に聞いてくる子供が、さまざまなものを覚えていくような動きだ。
2012年にGoogleはYouTube動画から多量の写真を取り出しディープラーニングを行ったところネットワーク上に猫の画像が抽出された(Google Official Blog 2012年6月26日より) |
ディープラーニングは画像認識のほか、自然言語解析や、いわゆるビッグデータのような莫大なデータの解析を得意としている。人間に並び、あるいは上回る精度で有意なデータを見出すことができるディープラーニングから得られる推測データは、人間が参考にするに十分な信頼性を持っている、あるいは人間の感性を超えた解答をもたらす可能性があるのだ。
たとえば米IBM社の人工知能「Watson」は、数十万のレシピを学習した結果、これまでになかった新しいレシピを「提案」するに至っている。
チェスや将棋の世界でも、ディープラーニングで過去の打ち筋を研究した対戦プログラムが、これまでの定石とは全く異なる新しい打ち筋を「発明」している。つまり、人工知能は人間と並ぶ、あるいは超える「知性」を持って、これまでの人類の知能が発見できなかった新しい知見にたどり着くことができる可能性を持っているわけだ。事実、製薬分野などでこれまでに見つかっていない新薬を人工知能が「発明」しているケースもある。これこそがディープラーニングがもたらした人工知能のブレイクスルーそのものだと言っていいだろう。