今日は2013年4月に完成した明治大学・中野キャンパスにある、明治大学総合数理学部を取材します。数学レシピとしては非常に気になる学部名ですが、いったいどんな研究をしているのでしょうか? 明治大学総合数理学部現象数理学科の上山大信准教授にお話をうかがいました。
-上山先生、本日はよろしくお願いします。さっそくですが、こちらの総合数理学部は、どんなことをしている学部なんでしょうか? 「数理」とついているので、非常に気になります。
総合数理学部には3つの学科があります。数学と情報技術を活用して様々な技術分野に新しいものを提案していく「先端メディアサイエンス学科」、ネットワークなどの社会インフラに対して新しい知見を発信していく「ネットワークデザイン学科」、そして身の回りのさまざまな現象を数学で解明する「現象数理学科」です。私はこの「現象数理学科」の准教授を務めています。
-現象数理学科とは、どのようなことをされているんですか?
イノベーションの背景には必ず数学的な考え方があると私たちは考えています。現象を理解するためのベースとなる数学を研究するわけです。そのベースとしての数学から新しいものが生まれているわけですからね。数学を活用して何をするかという、応用数学的なことをしている学科と言っていいでしょう。
-なるほど。その中でも上山さんのご専門は具体的にどのようなものですか?
いろいろ研究しているのですが…専門はなんでしょうね(笑)。メインとなっているのは、パターン形成と自己組織化の数理です。
-パターン形成とはどのようなものなのでしょうか?
たとえば、「どうやって自然に模様や形ができ上がるか」などですね。シマウマやパンダといった生物の模様や雪の結晶、木の枝などを見ていても自然にパターンが作り出されています。
-なるほど、自然界の中にあるパターンなんですね
はい。そういったパターンの背景にある基礎的なメカニズムを数学的なかたちで導き出し、それをうまく使ってものづくりに役立てようというわけです。生物の発生というのは究極のものづくりと言ってもよいですからね。実際にDNAがどのように働いて、生物の模様や形をつくるかということはまだあまりよく分かっていない。そういった現象の基礎的な部分を数学的に解き明かそうと研究しています。
-生物や物理の分野に近いのでしょうか?
物理に似ているとよく言われますが、私が主に扱っているのは化学反応を数理モデルにしたものです。動物の模様作りのパターンと化学反応のパターンは一緒なんです。生物はものづくりに最適なパターンを選択しながら進化しているので、これを数学的に分析して私たちのものづくりに使おうとしています。
-数学を使ってものづくりに役立てるということを、詳しく教えていただけますか?
こちらの細胞分裂のようなシミュレーションを見てください。これはある種の化学反応をシミュレーションした「細胞パターン」と呼んでいるものです。実際の細胞分裂ではないのですが、このパターンを方程式で示すことができます。円のなかでスポットの分裂を繰り返して増やしていき、円のなかを一杯にしてもうこれ以上変化しないというところまですすめると、きれいにスポットが並びます。このスポットは、自己組織化機能をもっており、線で結ぶとたくさんの三角形ができます。この「細胞パターン」がうまく並ぶということを、ものづくりなどに利用する方法を考えています。
-パターンの研究から、どのような応用ができるのでしょうか?
たとえば、心臓の上の筋肉に渦巻状のパターン形成が起こることがあります。これは心室細動の原因になる危険な徴候です。この悪いパターン形成のしくみが分かれば、根本原因をつきとめる助けになります。
-がん細胞の発生の原因究明などにも応用できそうですね
はい。欧米では医学の人と数学の人、シミュレーションの人などがコラボレーションしながら、がんの研究などを進めています。私も国立循環器病研究センターの方と共同研究を始めようとしています。なぜ渦巻きができるのか、その背景にある根本的な原理を知りたいのです。このように数学的なアプローチが重要なので、数学に期待されていることは多いんですよ。
-上山さんは他にどのような研究をされているんですか?
私は今、化学反応沈殿系について研究しています。試験管にある種類の化学物質をゼラチンと共に混ぜておき、上から違う化学物質を混ぜます。すると、上の化学物質が下に向かって徐々に浸透して沈殿をつくりますよね。このとき、沈殿が間欠的に発生してシマシマの模様が自然にできますが、このシマシマの幅や間隔には比例則があり、発生時間にも時間測があるんです。これを「リーゼガング現象」と言います。
-化学物質が比例によって沈殿しているんですか!
そうなんです。まるで化学反応が数学を知っているみたいですよね。この現象のモデルをつくって数式化します。たとえば特定の化学物質を濃くして実験したいときに、1つの条件だけを変えるということはできません。必ず他の条件も変わってしまいますから。
しかし、数学を使えば特定の条件だけを変えてシミュレーションすることができます。本来は独立して動かせないものを動かせるようになります。これを「実験数学」と言い、理想的な実験がシミュレーションによって可能になるんです。
このように三次元のモデルに起こすこともできますよ。
-数式の上で実験ができるわけですか。すごいですね!
「リーゼガング現象」の数理モデルを立てると、偏微分方程式になります。さらにこの現象を発見したリーゼガングは、不純物があった方が綺麗なパターンができるとも言っています。この不純物を再現するには、偏微分方程式の数理モデルに乱数を入力することで可能となります。
-現象のしくみそのものを数学で理解できるようになるわけですね
私は「理解した」ということには階層があると思っています。たとえば「なんだかわからないけど組み立てたら完成した」ということで「理解した」とする人もいますが、数学的に証明ができる「理解した」とはかなりの差がありますよね。この2つの「理解した」の階層を埋めていくことが大切なんです。そこが応用数学の役割だと思っています。どういう「理解した」がありえるかを考える中間管理職的な感じです。この数学を使った中間管理職的な人材は、今まであまり育ってこなかったんです。最先端のものを使いこなすけれど、次のものはつくれない人が多い。次のものをつくるためには数学が間違いなく必要です。
-数学は理解の過程の筋道ですものね
たとえば、グーグルの創始者のセルゲイ・ブリンは数学科出身ですが、グーグル検索のような革新的なサービスも、数学的な思考を積み重ねてイノベーションをつくっていった結果だったのだと思います。
これまでビジネスにならなかったものを、数学によってビジネス化するような社会にしたいですね。特に今は「統計学」が脚光を浴びるなど、社会的にも数学に注目が集まっていると思うので、私たちの学部はよいタイミングで設立できたと思います。
-上山さんは小さいころから数学に興味をもっていらっしゃったんですか?
実はそうでもないんです。私の実家はお寺で、長男なので寺の仕事をしなければなりませんでした。子どものころはそれがとにかく嫌で(笑)、お寺の仕事から一番遠い場所ということで数学に惹かれ、龍谷大学理工学部の数理情報学科に1期生として入学しました。大学の学科長が数学者の山口昌哉先生で、大きく影響を受けましたね。あ、でも今はお寺の仕事にも興味を持っていますよ!
-実家がお寺なんですか!
ありがたいことに、父親が門徒さんの名前管理などでコンピュータを使っていたので、子どものころからコンピュータに触れる機会がありました。とにかくパソコンが好きで、プログラミングなどをよくやっていました。そういうベースがあったので、数学にも興味をもてたんだと思います。
大学生のときに、模様をコンピュータのシミュレーションで発生させられるということに興味をもち、学者の道に入りました。
-やはりコンピュータは数学を語る上で欠かせませんね
僕のルーツがコンピュータというのもあるのですが、うちの学部ではプログラミングに力を入れています。使い方を早いうちに覚えて、ツールとしての強さを知ってもらいたいんです。コンピュータも数学も、両方使えた方がよいということですね。
-お話を聞いていて、なんだかもう一度大学に入り直したくなってしまいました。本日は貴重なお話、ありがとうございました!
社会で役立つ数学という観点で、とても興味深い研究内容でした。数学は現実から遠いと思われていることも多いですけど、現実から距離をとれたからこそ、根本のしくみに迫ることができる可能性があるんですね。改めて数学の力を教えられました。上山先生、貴重なお話をありがとうございました!
今回のインタビュイー
上山 大信(うえやま だいしん)
明治大学総合数理学部・准教授(取材時。現在は教授)
1970年山口県出身。龍谷大学大学院理工学研究科数理情報学専攻修了、北海道大学大学院理学研究科数学専攻単位取得満期退学。博士(理学)。
広島大学理学部数学科、大学院理学研究科数理分子生命理学専攻の専任助手を経て、2006年から明治大学理工学部数学科で特任講師、准教授を務める。2013年4月から現職。
このテキストは、(公財)日本数学検定協会の運営する数学検定ファンサイトの「数学探偵が行く!」のコンテンツを再編集したものです。
(公財)日本数学検定協会とは、数学の実力を図る数学・算数検定の実施をはじめ、数学に関する研究や講習会、普及、啓発活動を通じて数学的な思考力と応用力を提案する協会です。
数学検定・算数検定ファンサイトは、(公財)日本数学検定協会が開設する、数学好きが集うコミュニティサイトです。 社会と数学との接点や、数学教育に携わる人々の情報交換など、数学を軸により多くの示唆と教養を社会に提案していくために生まれました。本コラムのベースとなった「数学探偵が行く!」をはじめ、数学を楽しみながら学べるコンテンツをたくさん運営中です。