米AMDは米国時間の10月10日、サンフランシスコで第4世代EPYCの発表会を行った。この内容はオンラインでも同時配信されるが、これに先立ってこの第4世代EPYCの説明を受けたので、その内容をご紹介したいと思う。
第4世代EPYCはGenoaというコード名で知られている製品であり、昨年11月に開催されたAMD Accelerated Data Center Premiereの折にも名前が出て来ている(Photo01)。このGenoa、既にこの時点で特定顧客へのサンプル出荷が開始されていることが発表されたが、サーバー向けはどうしても検証期間が長くなりがちであり、逆に言えば1年以上を掛けてみっちりと検証が終わった、という話でもある。このGenoaは12ダイのCCD+IODという構成になることも、既に公開されている(Photo02)。ということで今回の発表に移りたい。
まず製品説明からご紹介する。Genoaを構成する4つの柱がこちら(Photo03)。ソケットあたり性能、コアあたり性能、ワークロード/マーケットに拠らない高性能、それとTCO削減である。そしてGenoaは、これを実現した(Photo04~06)としている。
さて、このPhoto04~06で判るように、Genoaでは製品名が7000シリーズから9000シリーズに変更となり、EPYC 9004となった。Photo07が製品一覧である。型番のルールは次に出てくるが、Fは動作周波数を引き上げた(その分消費電力の多い)モデル、Pは1P構成モデルとなる。その具体的なルールがこちら(Photo08)となっている。
実はそもそも今回何故Product Familyが9000番台になったのか、明確な説明が無かった(質疑応答でもこの話題は出たのだが、「性能とポジショニングを鑑みて」という謎の回答しかなかった)。何となく思いつくのは、来年投入されるZen 4cことBergamoベースのEPYCと区別するためではないかというあたりだ。ただBergamoが7004か? というとこれもちょっと謎で、案外BergamoはEPYC 5004とか8004とかになるのかもしれない。
まぁまだ詳細が発表されていない製品の事はともかくとして、そのEPYC 9004シリーズのポジショニングがこちら(Photo09)。HPCなどにはCore Performanceグレードを、CloudなどにはCore Densityを、オンプレミスを含む汎用にはBalanced and Optimizedグレードをそれぞれ選ぶのが妥当、という説明だ。実際第3世代EPYCでも64コアをフルに使う用途は本当にクラウド向けとかVDI Service向けなど割と限られており、32コアあたりの製品のニーズが多かった。この傾向は第4世代EPYCでも継承されると見ているらしい。
EPYC 9004シリーズの性能比較がこちら(Photo10)。ほぼモデルナンバーの順に性能がスケールしているのが判る。流石に96コアのEPYC 9654は他と比べても飛びぬけてる感はあるが、基本的にほぼスケールする形でラインナップが用意されているのが判る。
さて、比較対象が相変わらずXeon Platinumといのはこの際目を瞑って頂くとして、ここからは性能比較パートである(Photo11~19)。Desktop向けと異なり、割とコアの数にスケールする(≒アーキテクチャの違いによる性能の増分が少ない)結果になっているのは、性能がコアだけでなくシステム全体のパフォーマンスに依存する部分が大きいからという事でもある。とは言え、マルチソケットのスケールアップは限界があるし、スケールアウトは必ずしも全てのアプリケーションに適している訳ではない事を考えると、コア数を増やしてそれで性能がリニアにあがるのなら、それだけで十分大きな効果があると考えるべきだろう。
この結果として、例えば同じ計算処理を行わせるならEPYCのTCOはほぼXeon Platinumの半分(Photo20)だし、何なら2 Socketサーバーを1 Socketサーバーに置き換えてもいける(Photo21)、というのがPhoto04に出て来た4本の柱の最後の要素に対するAMDの回答である。
さてここまでは製品構成とか性能を説明してきたわけだが、ここからもう少し内部構造についてご紹介したい。Genoaは基本的にはRaphaelことRyzen 7000シリーズと同じCCDに、EPYC専用のIODを組み合わせた形となる。「基本的に」というのは、CCDのダイそのものはRyzen 7000と全く同一であるが、Ryzen 7000では無効化されているオプションがGenoaでは有効化されるからだ。要するにAMD Proなどとして提供されてきたセキュリティとかRAS関係の機能である。一方でIODの方は完全に新設計である。
そのGenoaの構造の特徴はこんな感じ(Photo22)である。CCDは最大12個、各々が8コアなのでトータル96コアという形になる。このCCDとIOD、及びIOD同士の接続は、第3世代のInfinity Fabricが利用されている。まずCCDに関して言えば、最大12個と書いたがバリエーションとしては4個(Photo23)・8個(Photo24)・12個(Photo25)の3パターンが用意される。32コアの製品までは4個、48/64コアの製品は8個、84/96コアの製品には12個CCDが搭載されるという形だ。このInfinity FabricのLinkをはGMI3と称されているが、そのGMI3の特徴がこちら(Photo26)。最大1.8GHz駆動で36Gbpsまでのスケールが可能である。転送の消費電力は2pJ/bitを切っており、これは初代EPYCを下回っている(初代EPYCが大体2pJ/bitとされていた)。配線長はともかく転送速度を大幅に引き上げながら、転送時消費電力を2pJ/bitに留めているのは流石である。また新たに2組のLinkで同期して転送するGMI3-Wideが新たに追加され、Photo23で示すように4 CCD構成で利用できるようになっている。
そのGMI3を利用しての構成だが、EPYC 9004では従来同様2 Socketと1 Socketの構成が選べる様になっている。で、PCI ExpressとInfinity Fabric(というかGMI)は同じポートを利用する格好になっているのだが、従来のプラットフォームとの違いの一つは2 SocketにおけるGMIの接続を3 Linkと4 Linkで選べる点である(Photo27)。4 Linkはオプション扱いで、普通は3 LinkにPCIe x160を外部接続に出す格好になるのが一般的らしい。
ちなみにPhoto28に出て来た32G SerDesだが、片方はxGMI+PCIe、もう片方はxGMI+PCIe+CXL+SATAでポートを共有する格好になる(Photo29)。Socketあたりの合計レーン数は136で、2 Socket構成の場合はこのうち3×16 or 4×16をSocket同士の接続(GMI3)に利用するので、トータルでは128ないし160 LaneがPCIe x16として利用できる計算となる。
あとIODの新機能として説明されたものに、Advanced VIC(Virtual Interrupt Controller)がある。要は仮想化環境でより割り込みの処理を高速化できるようにした、というもので、90%以上の効率を実現したとしている(Photo30)。
次にメモリについて。第3世代EPYCではDDR4×8chだったメモリは、第4世代ではDDR5×12chと大幅に強化された(Photo31)。ピークスループットは460GB/secで、通常のDDR5としてはかなりのものである。
ところでちょっとPhoto27に戻るのだが、第4世代EPYCの場合
- 1 Socket:最大2 DIMM/ch
- 2 Socket:最大1 DIMM/ch
という構成がデフォルトになっている。勿論技術的には2 Socketでも2 DIMM/chの構成は可能だが、2 DIMM/chにすると速度はDDR5-4800を下回る事になる。これはRaphaelことRyzen 7000シリーズも同じで、1 DIMM/chだと最大DDR5-5200まで可能なのが、2 DIMM/chだとDDR5-3600まで速度が落ちる(というか落とさないと動作保証がなされない)。現時点でEPYC 9004シリーズを2 DIMM/ch構成で利用した場合の最大速度は発表されていないが、DDR5-3600かそれ以下になるだろう。これもあって、1 Socketでは2 DIMM/ch構成を許す(別に推奨している訳ではない)が、2 Socketでは最初からDIMM Slotを1本/chにするのが標準的なデザインになっている。まぁこの場合でも1 Socketあたり6TB、2 Socketで12TBまで容量を確保できるから、問題ないという判断らしい。
このEPYC 9004シリーズのメモリコントローラであるが、従来よりも帯域が広い(まぁこれはch数の増加と速度の増加の両方が効いている)事に加え、特に2 Rankのメモリを利用した場合の性能低下を低く抑える事やLatencyを最小限に抑えることなど、多くの性能向上の策が取られているとする(Photo32)。またNUMAノードに合わせて物理的にメモリコントローラをパーティショニングする事も可能になった(Photo33)。あとこれはメモリ(というかIOD)なのかCCDなのか微妙なところだが、新たにAES-256でのメモリ暗号化にも対応した(従来はAES-128)。これによるペナルティ(Latency増加)は数%のオーダー、との事だった。
次にCXL周りについて。EPYC 9004シリーズではCXL 1.1+に対応した(Photo34)。CXL 1.1"+"とは何ぞや? という話だが、CXL 1.1の全機能に加え、CXL 2.0で定義されたType 3(Memory Expansion)の機能も先行して実装を行ったという話である。CXL 2.0の全機能な訳ではないので、例えばCXL Switchなどには未対応だが、既にいくつかのベンダーから出荷が始まっているCXL Memory Moduleは利用可能ということになる。実際デモではMicronのCXL 2.0 Memory Moduleを装着し、Streamを実施して正しく動作していることが示された。Sapphire Rapidsを差し置いて、Genoaが最初のCXL Memoryのプラットフォームになりそうという予測が現実のものになってしまった形だ。
ところで先ほどBergamoというかZen 4cについて少し言及した。現状発表されているのは、昨年のAMD Accelerated Data Center Premiereの中のこのスライド(Photo35,36)が全てなのだが、このBergamoのヒントが今回事前説明の中で紹介された。Photo37はZen 3とZen 4の違いを紹介したものだが、Zen 4cは「L3キャッシュ以外、全くZen 4と一緒」という話であった。要するにZen 4のCCDの32MBのL3キャッシュを削り(どの位削るか、はまだ不明)、その分コアを増やした格好になる。ただCCXの構造を変えるとは思えないので、1CCDあたり8コアという構成そのものは変わらず、
- 1ダイあたり2CCX、16コアとし、これを8ダイ並べて128コアとする。IODはGenoaと共通。
- 1ダイあたり1CCX、8コアのままでダイサイズだけ縮小する。これを16個並べて128コアとする。ただIODはGenoaのものは最大12ダイまでのサポートなので、Bergamo用の新しいIODを用意する。
のどちらかになると思われる。可能性として高いのは前者の方である。先にPhoto25とか26の脚注でごちゃごちゃ言っていたのは、仮にIODが16ポートあれば、後者の構成も可能だからだ。まぁ配線を考えると、8ダイの公算の方が高そうに思える。
実際にはBergamoはL3を削るのみならず動作周波数も相当下げて、性能/消費電力比の向上を目指すと思われる。実際にどんな構成で登場するのか、ちょっと楽しみである。